Beyond Lebesgue and Baire: generic regular variation

Bingham, N. H.; and Ostaszewski, AdamORCID logo (2007) Beyond Lebesgue and Baire: generic regular variation. Technical Report. London School of Economics and Political Science, London, UK.
Copy

We show that the No Trumps combinatorial property (NT), introduced for the study of the foundations of regular variation in LSE-CDAM-2006-22, permits a natural extension of the definition of the class of functions of regular variation, including the measurable/Baire functions to which the classical theory restricts itself. The `generic functions of regular variation' defined here characterize the maximal class of functions, to which the three fundamental theorems of regular variation (Uniform Convergence, Representation and Characterization Theorems) apply. The proof uses combinatorial variants of the Steinhaus and Ostrowski Theorems deduced from NT in LSE-CDAM-2007-15.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads