Items where Author is "Bingham, N. H."
Number of items: 48.
Article
Additivity, subadditivity and linearity: automatic continuity and quantifier weakening.
Bingham, N. H. and Ostaszewski, A. J.
Automatic continuity via analytic thinning.
Bingham, N. H. and Ostaszewski, A. J.
Automatic continuity: subadditivity, convexity, uniformity.
Bingham, N. H. and Ostaszewski, A. J.
Beurling moving averages and approximate homomorphisms.
Bingham, N. H. and Ostaszewski, Adam
Beurling slow and regular variation.
Bingham, N. H. and Ostaszewski, A. J.
Beyond Haar and Cameron-Martin:the Steinhaus support.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Beyond Lebesgue and Baire II: bitopology and measure-category duality.
Bingham, N. H. and Ostaszewski, A. J.
Beyond Lebesgue and Baire IV: density topologies and a converse Steinhaus-Weil theorem.
Bingham, N. H. and Ostaszewski, Adam
Beyond Lebesgue and Baire: generic regular variation.
Bingham, N. H. and Ostaszewski, Adam
Category-measure duality: convexity, mid-point convexity and Berz sublinearity.
Bingham, N. H. and Ostaszewski, Adam
Cauchy’s functional equation and extensions: Goldie’s equation and inequality, the Gołąb–Schinzel equation and Beurling’s equation.
Bingham, N. H. and Ostaszewski, A. J.
Dichotomy and infinite combinatorics: the theorems of Steinhaus and Ostrowski.
Bingham, N. H. and Ostaszewski, A. J.
General regular variation, Popa groups and quantifier weakening.
Ostaszewski, Adam and Bingham, N. H.
picture_as_pdf
Generic subadditive functions.
Bingham, N. H. and Ostaszewski, A. J.
The Goldie equation:III. Homomorphisms from functional equations.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Homomorphisms from functional equations:The Goldie equation, II.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Homotopy and the Kestelman-Borwein-Ditor theorem.
Bingham, N. H. and Ostaszewski, A. J.
The Index Theorem of topological regular variation and its applications.
Bingham, N. H. and Ostaszewski, A. J.
Infinite combinatorics and the foundations of regular variation.
Bingham, N. H. and Ostaszewski, Adam
Infinite combinatorics in function spaces: category methods.
Bingham, N. H. and Ostaszewski, A. J.
Normed versus topological groups: dichotomy and duality.
Bingham, N. H. and Ostaszewski, A. J.
On subadditive functions bounded above on a large set.
Bingham, N. H. and Jabłońska, Eliza and Jabłoński, Wojciech and Ostaszewski, Adam
picture_as_pdf
Parthasarathy, shift-compactness and infinite combinatorics.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Regular variation without limits.
Bingham, N. H. and Ostaszewski, Adam
Sequential regular variation:extensions of Kendall's Theorem.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Set theory and the analyst.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
The Steinhaus theorem and regular variation: de Bruijn and after.
Bingham, N. H. and Ostaszewski, A. J.
The Steinhaus-Weil property III:Weil topologies.
Ostaszewski, Adam and Bingham, N. H.
picture_as_pdf
The Steinhaus-Weil property IV:other interior-point properties.
Ostaszewski, Adam and Bingham, N. H.
picture_as_pdf
The Steinhaus-Weil property:II. The Simmons-Mospan Converse.
Bingham, N. H. and Ostaszewski, Adam
picture_as_pdf
Topological regular variation: I. Slow variation.
Bingham, N. H. and Ostaszewski, Adam
Topological regular variation: II. The fundamental theorems.
Bingham, N. H. and Ostaszewski, Adam
Topological regular variation: III. Regular variation.
Bingham, N. H. and Ostaszewski, Adam
Variants on the Berz sublinearity theorem.
Ostaszewski, Adam and Bingham, N. H.
picture_as_pdf
Very slowly varying functions. II.
Bingham, N. H. and Ostaszewski, Adam
Report
Analytic automaticity: the theorems of Jones and Kominek.
Bingham, N. H. and Ostaszewski, Adam
Beyond Lebesgue and Baire: generic regular variation.
Bingham, N. H. and Ostaszewski, Adam
Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions.
Bingham, N. H. and Ostaszewski, Adam
Duality and the Kestelman-Borwein-Ditor theorem.
Bingham, N. H. and Ostaszewski, Adam
Foundations of regular variation.
Bingham, N. H. and Ostaszewski, Adam
Generic subadditive functions.
Bingham, N. H. and Ostaszewski, Adam
Genericity and the Kestelman-Borwein-Ditor Theorem.
Bingham, N. H. and Ostaszewski, Adam
Homotopy and the Kestelman-Borwein-Ditor theorem.
Bingham, N. H. and Ostaszewski, Adam
New automatic properties: subadditivity, convexity, uniformity.
Bingham, N. H. and Ostaszewski, Adam
Very slowly varying functions - II.
Bingham, N. H. and Ostaszewski, Adam
The converse Ostrowski theorem.
Bingham, N. H. and Ostaszewski, Adam