Items where Author is "Bingham, N. H."

Number of items: 48.
  • Additivity, subadditivity and linearity: automatic continuity and quantifier weakening. Bingham, N. H. and Ostaszewski, A. J.
  • Analytic automaticity: the theorems of Jones and Kominek. Bingham, N. H. and Ostaszewski, Adam
  • Automatic continuity via analytic thinning. Bingham, N. H. and Ostaszewski, A. J.
  • Automatic continuity: subadditivity, convexity, uniformity. Bingham, N. H. and Ostaszewski, A. J.
  • Beurling moving averages and approximate homomorphisms. Bingham, N. H. and Ostaszewski, Adam
  • Beurling slow and regular variation. Bingham, N. H. and Ostaszewski, A. J.
  • Beyond Haar and Cameron-Martin:the Steinhaus support. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Beyond Lebesgue and Baire II: bitopology and measure-category duality. Bingham, N. H. and Ostaszewski, A. J.
  • Beyond Lebesgue and Baire IV: density topologies and a converse Steinhaus-Weil theorem. Bingham, N. H. and Ostaszewski, Adam
  • Beyond Lebesgue and Baire: generic regular variation. Bingham, N. H. and Ostaszewski, Adam
  • Beyond Lebesgue and Baire: generic regular variation. Bingham, N. H. and Ostaszewski, Adam
  • Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions. Bingham, N. H. and Ostaszewski, Adam
  • Category-measure duality: convexity, mid-point convexity and Berz sublinearity. Bingham, N. H. and Ostaszewski, Adam
  • Cauchy’s functional equation and extensions: Goldie’s equation and inequality, the Gołąb–Schinzel equation and Beurling’s equation. Bingham, N. H. and Ostaszewski, A. J.
  • Dichotomy and infinite combinatorics: the theorems of Steinhaus and Ostrowski. Bingham, N. H. and Ostaszewski, A. J.
  • Duality and the Kestelman-Borwein-Ditor theorem. Bingham, N. H. and Ostaszewski, Adam
  • Five questions. Bingham, N. H.
  • Foundations of regular variation. Bingham, N. H. and Ostaszewski, Adam
  • General regular variation, Popa groups and quantifier weakening. Ostaszewski, Adam and Bingham, N. H. picture_as_pdf
  • Generic subadditive functions. Bingham, N. H. and Ostaszewski, Adam
  • Generic subadditive functions. Bingham, N. H. and Ostaszewski, A. J.
  • Genericity and the Kestelman-Borwein-Ditor Theorem. Bingham, N. H. and Ostaszewski, Adam
  • The Goldie equation:III. Homomorphisms from functional equations. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Homomorphisms from functional equations:The Goldie equation, II. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Homotopy and the Kestelman-Borwein-Ditor theorem. Bingham, N. H. and Ostaszewski, A. J.
  • Homotopy and the Kestelman-Borwein-Ditor theorem. Bingham, N. H. and Ostaszewski, Adam
  • The Index Theorem of topological regular variation and its applications. Bingham, N. H. and Ostaszewski, A. J.
  • Infinite combinatorics and the foundations of regular variation. Bingham, N. H. and Ostaszewski, Adam
  • Infinite combinatorics in function spaces: category methods. Bingham, N. H. and Ostaszewski, A. J.
  • Kingman, category and combinatorics. Bingham, N. H. and Ostaszewski, Adam
  • New automatic properties: subadditivity, convexity, uniformity. Bingham, N. H. and Ostaszewski, Adam
  • Normed versus topological groups: dichotomy and duality. Bingham, N. H. and Ostaszewski, A. J.
  • On subadditive functions bounded above on a large set. Bingham, N. H. and Jabłońska, Eliza and Jabłoński, Wojciech and Ostaszewski, Adam picture_as_pdf
  • Parthasarathy, shift-compactness and infinite combinatorics. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Regular variation without limits. Bingham, N. H. and Ostaszewski, Adam
  • Sequential regular variation:extensions of Kendall's Theorem. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Set theory and the analyst. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • The Steinhaus theorem and regular variation: de Bruijn and after. Bingham, N. H. and Ostaszewski, A. J.
  • The Steinhaus-Weil property III:Weil topologies. Ostaszewski, Adam and Bingham, N. H. picture_as_pdf
  • The Steinhaus-Weil property IV:other interior-point properties. Ostaszewski, Adam and Bingham, N. H. picture_as_pdf
  • The Steinhaus-Weil property:II. The Simmons-Mospan Converse. Bingham, N. H. and Ostaszewski, Adam picture_as_pdf
  • Topological regular variation: I. Slow variation. Bingham, N. H. and Ostaszewski, Adam
  • Topological regular variation: II. The fundamental theorems. Bingham, N. H. and Ostaszewski, Adam
  • Topological regular variation: III. Regular variation. Bingham, N. H. and Ostaszewski, Adam
  • Variants on the Berz sublinearity theorem. Ostaszewski, Adam and Bingham, N. H. picture_as_pdf
  • Very slowly varying functions - II. Bingham, N. H. and Ostaszewski, Adam
  • Very slowly varying functions. II. Bingham, N. H. and Ostaszewski, Adam
  • The converse Ostrowski theorem. Bingham, N. H. and Ostaszewski, Adam