Very slowly varying functions - II

Bingham, N. H.; and Ostaszewski, AdamORCID logo (2007) Very slowly varying functions - II. Technical Report. London School of Economics and Political Science, London, UK.
Copy

This paper is a sequel to both Ash, Erdös and Rubel AER, on very slowly varying functions, and BOst1, on foundations of regular variation. We show that generalizations of the Ash-Erdös-Rubel approach -- imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property -- lead naturally to the main result of regular variation, the Uniform Convergence Theorem. Keywords: Slow variation, Uniform Convergence Theorem, Heiberg-Lipschitz condition, Heiberg-Seneta theorem.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads