Automatic continuity via analytic thinning

Bingham, N. H.; and Ostaszewski, A. J.ORCID logo (2010) Automatic continuity via analytic thinning Proceedings of the American Mathematical Society, 138 (03). p. 907. ISSN 0002-9939
Copy

We use Choquet's analytic capacitability theorem and the Kestelman-Borwein-Ditor theorem (on the inclusion of null sequences by translation) to derive results on `analytic automaticity' - for instance, a stronger common generalization of the Jones/Kominek theorems that an additive function whose restriction is continuous/bounded on an analytic set $ T$ spanning $ \mathbb{R}$ (e.g., containing a Hamel basis) is continuous on $ \mathbb{R}$. We obtain results on `compact spannability' - the ability of compact sets to span $ \mathbb{R}$. From this, we derive Jones' Theorem from Kominek's. We cite several applications, including the Uniform Convergence Theorem of regular variation.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads