On generalized Langevin dynamics and the modelling of global mean temperature

Watkins, N. W.ORCID logo, Chapman, S. C., Chechkin, A., Ford, I., Klages, R. & Stainforth, D. A.ORCID logo (2021). On generalized Langevin dynamics and the modelling of global mean temperature. In Braha, D., de Aguiar, M. A., Gershenson, C., Morales, A. J., Kaufman, L., Naumova, E. N., Minai, A. A. & Bar-Yam, Y. (Eds.), Unifying Themes in Complex Systems X: Proceedings of the Tenth International Conference on Complex Systems (pp. 433 - 441). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-030-67318-5_29
Copy

Climate science employs a hierarchy of models, trading the tractability of simplified energy balance models (EBMs) against the detail of Global Circulation Models. Since the pioneering work of Hasselmann, stochastic EBMs have allowed treatment of climate fluctuations and noise. However, it has recently been claimed that observations motivate heavy-tailed temporal response functions in global mean temperature to perturbations. Our complementary approach exploits the correspondence between Hasselmann’s EBM and the original mean-reverting stochastic model in physics, Langevin’s equation of 1908. We propose mapping a model well known in statistical mechanics, the Mori-Kubo Generalised Langevin Equation (GLE) to generalise the Hasselmann EBM. If present, long range memory then simplifies the GLE to a fractional Langevin equation (FLE). We describe the corresponding EBMs that map to the GLE and FLE, briefly discuss their solutions, and relate them to Lovejoy’s new Fractional Energy Balance Model.

picture_as_pdf

subject
Accepted Version

Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export