On subadditive functions bounded above on a large set

Bingham, N. H.; Jabłońska, Eliza; Jabłoński, Wojciech; and Ostaszewski, AdamORCID logo (2020) On subadditive functions bounded above on a large set Results in Mathematics, 75 (2): 58. ISSN 1422-6383
Copy

It is well known that boundedness of a subadditive function need not imply its continuity. Here we prove that each subadditive function f: X→ R bounded above on a shift–compact (non–Haar–null, non–Haar–meagre) set is locally bounded at each point of the domain. Our results refer to results from Kuczma’s book (An Introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, 2nd edn, Birkhäuser Verlag, Basel, 2009, Chapter 16) and papers by Bingham and Ostaszewski [Proc Am Math Soc 136(12):4257–4266, 2008, Aequationes Math 78(3):257–270, 2009, Dissert Math 472:138pp., 2010, Indag Math (N.S.) 29:687–713, 2018, Aequationes Math 93(2):351–369, 2019).

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads