A note on diameter-Ramsey sets

Corsten, Jan; and Frankl, Nóra (2018) A note on diameter-Ramsey sets European Journal of Combinatorics, 71. pp. 51-54. ISSN 0195-6698
Copy

A finite set A⊂Rd is called diameter-Ramsey if for every r∈N, there exists some n∈N and a finite set B⊂Rn with diam(A)=diam(B) such that whenever B is coloured with r colours, there is a monochromatic set A′⊂B which is congruent to A. We prove that sets of diameter 1 with circumradius larger than 1/2–√ are not diameter-Ramsey. In particular, we obtain that triangles with an angle larger than 135∘ are not diameter-Ramsey, improving a result of Frankl, Pach, Reiher and R\"odl. Furthermore, we deduce that there are simplices which are almost regular but not diameter-Ramsey.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads