The number of hypergraphs without linear cycles

Balogh, József; Narayanan, Bhargav; and Skokan, JozefORCID logo (2019) The number of hypergraphs without linear cycles Journal of Combinatorial Theory, Series B, 134. pp. 309-321. ISSN 0095-8956
Copy

The r-uniform linear k-cycle C k r is the r-uniform hypergraph on k(r−1) vertices whose edges are sets of r consecutive vertices in a cyclic ordering of the vertex set chosen in such a way that every pair of consecutive edges share exactly one vertex. Here, we prove a balanced supersaturation result for linear cycles which we then use in conjunction with the method of hypergraph containers to show that for any fixed pair of integers r,k≥3, the number of C k r-free r-uniform hypergraphs on n vertices is 2 Θ(n r−1) , thereby settling a conjecture due to Mubayi and Wang from 2017.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads