Finding tight hamilton cycles in random hypergraphs faster

Allen, PeterORCID logo; Koch, Christoph; Parczyk, Olaf; and Person, Yury (2018) Finding tight hamilton cycles in random hypergraphs faster In: LATIN 2018: theoretical informatics. Lecture Notes in Computer Science (10807). Springer Berlin / Heidelberg, Cham, Switzerland, pp. 28-36. ISBN 9783319774039
Copy

In an r-uniform hypergraph on n vertices a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least Clog3n/n . Our result partially answers a question of Dudek and Frieze (Random Struct Algorithms 42:374–385, 2013) who proved that tight Hamilton cycles exists already for p=ω(1/n) for r=3 and p=(e+o(1))/n for r≥4 using a second moment argument. Moreover our algorithm is superior to previous results of Allen et al. (Random Struct Algorithms 46:446–465, 2015) and Nenadov and Škorić (arXiv:1601.04034) in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities p≥n−1+ε , while the algorithm of Nenadov and Škorić is a randomised quasipolynomial time algorithm working for edge probabilities p≥Clog8n/n .

mail Request Copy picture_as_pdf

picture_as_pdf
subject
Accepted Version
lock
Restricted to Registered users only

Download Request Copy

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads