Large width nearest prototype classification on general distance spaces

Anthony, MartinORCID logo; and Ratsaby, Joel (2018) Large width nearest prototype classification on general distance spaces Theoretical Computer Science, 738 (22). pp. 65-79. ISSN 0304-3975
Copy

In this paper we consider the problem of learning nearest-prototype classifiers in any finite distance space; that is, in any finite set equipped with a distance function. An important advantage of a distance space over a metric space is that the triangle inequality need not be satisfied, which makes our results potentially very useful in practice. We consider a family of binary classifiers for learning nearest-prototype classification on distance spaces, building on the concept of large-width learning which we introduced and studied in earlier works. Nearest-prototype is a more general version of the ubiquitous nearest-neighbor classifier: a prototype may or may not be a sample point. One advantage in the approach taken in this paper is that the error bounds depend on a 'width' parameter, which can be sample-dependent and thereby yield a tighter bound.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads