Fluctuation identities with continuous monitoring and their application to price barrier options
We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential Lévy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener-Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-z domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme.
| Item Type | Article |
|---|---|
| Copyright holders | © 2018 Elsevier B.V. |
| Keywords | finance, Wiener-Hopf factorisation, Hilbert transform, Laplace transform, spectral filter |
| Departments | Systemic Risk Centre |
| DOI | 10.1016/j.ejor.2018.04.016 |
| Date Deposited | 26 Apr 2018 10:54 |
| Acceptance Date | 2018-04-10 |
| URI | https://researchonline.lse.ac.uk/id/eprint/87658 |