Confidence regions for entries of a large precision matrix

Chang, Jinyuan; Qiu, Yumou; Yao, QiweiORCID logo; and Zou, Tao (2018) Confidence regions for entries of a large precision matrix Journal of Econometrics, 206 (1). pp. 57-82. ISSN 0304-4076
Copy

We consider the statistical inference for high-dimensional precision matrices. Specifically, we propose a data-driven procedure for constructing a class of simultaneous confidence regions for a subset of the entries of a large precision matrix. The confidence regions can be applied to test for specific structures of a precision matrix, and to recover its nonzero components. We first construct an estimator for the precision matrix via penalized node-wise regression. We then develop the Gaussian approximation to approximate the distribution of the maximum difference between the estimated and the true precision coefficients. A computationally feasible parametric bootstrap algorithm is developed to implement the proposed procedure. The theoretical justification is established under the setting which allows temporal dependence among observations. Therefore the proposed procedure is applicable to both independent and identically distributed data and time series data. Numerical results with both simulated and real data confirm the good performance of the proposed method.


picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads