A structural characterization of numéraires of convex sets of nonnegative random variables
Kardaras, Constantinos
(2012)
A structural characterization of numéraires of convex sets of nonnegative random variables.
Positivity, 16 (2).
pp. 245-253.
ISSN 1385-1292
We introduce the concept of numéraire s of convex sets in L0+L+0 , the nonnegative orthant of the topological vector space L0 of all random variables built over a probability space. A necessary and sufficient condition for an element of a convex set C⊆L0+C⊆L+0 to be a numéraire of CC is given, inspired from ideas in financial mathematics.
| Item Type | Article |
|---|---|
| Keywords | numéraires,support points,duality,financial mathematics |
| Departments | Statistics |
| DOI | 10.1007/s11117-011-0120-1 |
| Date Deposited | 30 Nov 2017 11:25 |
| URI | https://researchonline.lse.ac.uk/id/eprint/85890 |
ORCID: https://orcid.org/0000-0001-6903-4506