Limits of the Kucera-Gacs coding method

Barmpalias, George; and Lewis-Pye, Andrew (2017) Limits of the Kucera-Gacs coding method. In: Post-proceedings volume of SEALS 2016 (South Eastern Logic Symposium). World Scientific (Firm).
Copy

Every real is computable from a Martin-Loef random real. This well known result in algorithmic randomness was proved by Kucera and Gacs. In this survey article we discuss various approaches to the problem of coding an arbitrary real into a Martin-Loef random real,and also describe new results concerning optimal methods of coding. We start with a simple presentation of the original methods of Kucera and Gacs and then rigorously demonstrate their limitations in terms of the size of the redundancy in the codes that they produce. Armed with a deeper understanding of these methods, we then proceed to motivate and illustrate aspects of the new coding method that was recently introduced by Barmpalias and Lewis-Pye and which achieves optimal logarithmic redundancy, an exponential improvement over the original redundancy bounds.

mail Request Copy picture_as_pdf

picture_as_pdf
subject
Accepted Version
lock
Restricted to Registered users only

Download Request Copy

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads