A parametric bootstrap test for cycles

Dalla, V. & Hidalgo, J. (2005). A parametric bootstrap test for cycles. (Econometrics Paper EM/2005/486). Suntory and Toyota International Centres for Economics and Related Disciplines.
Copy

The paper proposes a simple test for the hypothesis of strong cycles and as a by-product a test for weak dependence for linear processes. We show that the limit distribution of the test is the maximum of a (semi)Gaussian process G(τ), τ ∈ [0; 1]. Because the covariance structure of G(τ) is a complicated function of τ and model dependent, to obtain the critical values (if possible) of maxτ∈[0;1] G(τ) may be difficult. For this reason we propose a bootstrap scheme in the frequency domain to circumvent the problem of obtaining (asymptotically) valid critical values. The proposed bootstrap can be regarded as an alternative procedure to existing bootstrap methods in the time domain such as the residual-based bootstrap. Finally, we illustrate the performance of the bootstrap test by a small Monte Carlo experiment and an empirical example.

picture_as_pdf


Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export