The second largest component in the supercritical 2D Hamming graph
Luczak, M. & Spencer, J.
(2007).
The second largest component in the supercritical 2D Hamming graph.
London School of Economics and Political Science.
The 2-dimensional Hamming graph H(2,n) consists of the n2 vertices (i,j), 1≤ i,j≤ n, two vertices being adjacent when they share a common coordinate. We examine random subgraphs of H(2,n) in percolation with edge probability p, so that the average degree 2(n-1)p=1+ε. Previous work [5] had shown that in the barely supercritical region n-2/3 ln1/3n << ε << 1 the largest component has size ~ 2εn. Here we show that the second largest component has size close to ε-2, so that the dominant component has emerged.
| Item Type | Report (Technical Report) |
|---|---|
| Copyright holders | © 2007 London school of economics and political science |
| Departments | LSE > Academic Departments > Mathematics |
| Date Deposited | 10 Jul 2008 |
| URI | https://researchonline.lse.ac.uk/id/eprint/6808 |
Explore Further
- http://www.cdam.lse.ac.uk/Reports/ (Official URL)