Optimal prediction for positive self-similar Markov processes

Baurdoux, Erik J.ORCID logo; Kyprianou, Andreas E.; and Ott, Curdin (2016) Optimal prediction for positive self-similar Markov processes. Electronic Journal of Probability, 21: 48. ISSN 1083-6489
Copy

This paper addresses the question of predicting when a positive self-similar Markov process XX attains its pathwise global supremum or infimum before hitting zero for the first time (if it does at all). This problem has been studied in [9] under the assumption that XX is a positive transient diffusion. We extend their result to the class of positive self-similar Markov processes by establishing a link to [3], where the same question is studied for a Lévy process drifting to −∞−∞. The connection to [3] relies on the so-called Lamperti transformation [15] which links the class of positive self-similar Markov processes with that of Lévy processes. Our approach shows that the results in [9] for Bessel processes can also be seen as a consequence of self-similarity.


picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads