Generalized Yule–Walker estimation for spatio-temporal models with unknown diagonal coefficients

Dou, Baojun; Parrella, Maria Lucia; and Yao, QiweiORCID logo (2016) Generalized Yule–Walker estimation for spatio-temporal models with unknown diagonal coefficients. Journal of Econometrics, 194 (2). pp. 369-382. ISSN 0304-4076
Copy

We consider a class of spatio-temporal models which extend popular econometric spatial autoregressive panel data models by allowing the scalar coefficients for each location (or panel) different from each other. To overcome the innate endogeneity, we propose a generalized Yule–Walker estimation method which applies the least squares estimation to a Yule–Walker equation. The asymptotic theory is developed under the setting that both the sample size and the number of locations (or panels) tend to infinity under a general setting for stationary and α-mixing processes, which includes spatial autoregressive panel data models driven by i.i.d. innovations as special cases. The proposed methods are illustrated using both simulated and real data.


picture_as_pdf
Yao_Generalized Yule–Walker estimation_2017.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Accepted Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads