Tight cycles and regular slices in dense hypergraphs

Allen, PeterORCID logo; Böttcher, JuliaORCID logo; Cooley, Oliver; and Mycroft, Richard (2017) Tight cycles and regular slices in dense hypergraphs Journal of Combinatorial Theory, Series A, 149. pp. 30-100. ISSN 0097-3165
Copy

We study properties of random subcomplexes of partitions returned by (a suitable form of) the Strong Hypergraph Regularity Lemma, which we call regular slices. We argue that these subcomplexes capture many important structural properties of the original hypergraph. Accordingly we advocate their use in extremal hypergraph theory, and explain how they can lead to considerable simplifications in existing proofs in this field. We also use them for establishing the following two new results. Firstly, we prove a hypergraph extension of the Erd\H{o}s-Gallai Theorem: for every δ>0 every sufficiently large k-uniform hypergraph with at least (α+δ)(nk) edges contains a tight cycle of length αn for each α∈[0,1]. Secondly, we find (asymptotically) the minimum codegree requirement for a k-uniform k-partite hypergraph, each of whose parts has n vertices, to contain a tight cycle of length αkn, for each 0<α<1.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads