Semiparametric time series models with log-concave innovations: maximum likelihood estimation and its consistency

Chen, YiningORCID logo (2015) Semiparametric time series models with log-concave innovations: maximum likelihood estimation and its consistency Scandinavian Journal of Statistics, 42 (1). pp. 1-31. ISSN 0303-6898
Copy

We study semiparametric time series models with innovations following a log-concave distribution. We propose a general maximum likelihood framework that allows us to estimate simultaneously the parameters of the model and the density of the innovations. This framework can be easily adapted to many well-known models, including autoregressive moving average (ARMA), generalized autoregressive conditionally heteroscedastic (GARCH), and ARMA-GARCH models. Furthermore, we show that the estimator under our new framework is consistent in both ARMA and ARMA-GARCH settings. We demonstrate its finite sample performance via a thorough simulation study and apply it to model the daily log-return of the FTSE 100 index.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads