Conditional minimum volume predictive regions for stochastic processes

Polonik, Wolfgang; and Yao, QiweiORCID logo (2000) Conditional minimum volume predictive regions for stochastic processes. Journal of the American Statistical Association, 95 (450). pp. 509-519. ISSN 0162-1459
Copy

Motivated by interval/region prediction in nonlinear time series, we propose a minimum volume predictor (MV-predictor) for a strictly stationary process. The MV-predictor varies with respect to the current position in the state space and has the minimum Lebesgue measure among all regions with the nominal coverage probability. We have established consistency, convergence rates, and asymptotic normality for both coverage probability and Lebesgue measure of the estimated MV-predictor under the assumption that the observations are taken from a strong mixing process. Applications with both real and simulated data sets illustrate the proposed methods.


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads