On the Ramsey number of the triangle and the cube

Pontiveros, Gonzalo Fiz; Griffiths, Simon; Morris, Robert; Saxton, David; and Skokan, JozefORCID logo (2016) On the Ramsey number of the triangle and the cube. Combinatorica, 36 (1). pp. 71-89. ISSN 0209-9683
Copy

The Ramsey number r(K 3,Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r(K 3,Q n )=2 n+1−1 for every n∈ℕ, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K 3,Q n )⩽7000·2 n . Here we show that r(K 3,Q n )=(1+o(1))2 n+1 as n→∞.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads