Bootstrap estimation of actual significance levels for tests based on estimated nuisance parameters

Yao, QiweiORCID logo; Yang, Wengyan; and Tong, Howell (2001) Bootstrap estimation of actual significance levels for tests based on estimated nuisance parameters. Statistics and Computing, 11 (4). pp. 367-371. ISSN 0960-3174
Copy

Often for a non-regular parametric hypothesis, a tractable test statistic involves a nuisance parameter. A common practice is to replace the unknown nuisance parameter by its estimator. The validality of such a replacement can only be justified for an infinite sample in the sense that under appropriate conditions the asymptotic distribution of the statistic under the null hypothesis is unchanged when the nuisance parameter is replaced by its estimator (Crowder M.J. 1990. Biometrika 77: 499–506). We propose a bootstrap method to calibrate the error incurred in the significance level, for finite samples, due to the replacement. Further, we have proved that the bootstrap method provides a more accurate estimator for the unknown actual significance level than the nominal level. Simulations demonstrate the proposed methodology.


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads