Prediction and nonparametric estimation for time series with heavy tails

Hall, Peter; Peng, Liang; and Yao, QiweiORCID logo (2002) Prediction and nonparametric estimation for time series with heavy tails Journal of Time Series Analysis, 23 (3). pp. 313-331. ISSN 0143-9782
Copy

Motivated by prediction problems for time series with heavy-tailed marginal distributions, we consider methods based on `local least absolute deviations' for estimating a regression median from dependent data. Unlike more conventional `local median' methods, which are in effect based on locally fitting a polynomial of degree 0, techniques founded on local least absolute deviations have quadratic bias right up to the boundary of the design interval. Also in contrast to local least-squares methods based on linear fits, the order of magnitude of variance does not depend on tail-weight of the error distribution. To make these points clear, we develop theory describing local applications to time series of both least-squares and least-absolute-deviations methods, showing for example that, in the case of heavy-tailed data, the conventional local-linear least-squares estimator suffers from an additional bias term as well as increased variance.


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads