On asymptotic distributions of weighted sums of periodograms

Giraitis, Liudas; and Koul, Hira L. (2013) On asymptotic distributions of weighted sums of periodograms Bernoulli, 19 (5B). pp. 2389-2413. ISSN 1350-7265
Copy

We establish asymptotic normality of weighted sums of periodograms of a stationary linear process where weights depend on the sample size. Such sums appear in numerous statistical applications and can be regarded as a discretized versions of quadratic forms involving integrals of weighted periodograms. Conditions for asymptotic normality of these weighted sums are simple, minimal, and resemble Lindeberg–Feller condition for weighted sums of independent and identically distributed random variables. Our results are applicable to a large class of short, long or negative memory processes. The proof is based on sharp bounds derived for Bartlett type approximation of these sums by the corresponding sums of weighted periodograms of independent and identically distributed random variables.


picture_as_pdf
subject
Published Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads