Matching a distribution by matching quantiles estimation

Sgouropoulos, N., Yao, Q.ORCID logo & Yastremiz, C. (2015). Matching a distribution by matching quantiles estimation. Journal of the American Statistical Association, 110(510), 742 - 759. https://doi.org/10.1080/01621459.2014.929522
Copy

Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real data set is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO.

picture_as_pdf

subject
Published Version
Creative Commons: Attribution 4.0

Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export