Beurling regular variation, Bloom dichotomy, and the Gołąb–Schinzel functional equation

Ostaszewski, A. J.ORCID logo (2015) Beurling regular variation, Bloom dichotomy, and the Gołąb–Schinzel functional equation. Aequationes Mathematicae, 89 (3). pp. 725-744. ISSN 0001-9054
Copy

The class of 'self-neglecting' functions at the heart of Beurling slow variation is expanded by permitting a positive asymptotic limit function λ(t), in place of the usual limit 1, necessarily satisfying the following 'self-neglect' condition:(Formula presented.)known as the Goła{ogonek}b-Schinzel functional equation, a relative of the Cauchy equation (which is itself also central to Karamata regular variation). This equation, due independently to Aczél and Goła{ogonek}b, occurring in the study of one-parameter subgroups, is here accessory to the λ -Uniform Convergence Theorem (λ-UCT) for the recent, flow-motivated, 'Beurling regular variation'. Positive solutions, when continuous, are known to be λ(t) = 1 + at (below a new, 'flow', proof is given); a = 0 recovers the usual limit 1 for self-neglecting functions. The λ-UCT allows the inclusion of Karamata multiplicative regular variation in the Beurling theory of regular variation, with λ (t) = 1 + t being the relevant case here, and generalizes Bloom's theorem concerning self-neglecting functions.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads