Subgroup majorization

Francis, Andrew R.; and Wynn, Henry P.ORCID logo (2014) Subgroup majorization. Linear Algebra and Its Applications, 444. pp. 53-66. ISSN 0024-3795
Copy

The extension of majorization (also called the rearrangement ordering), to more general groups than the symmetric (permutation) group, is referred to as G-majorization. There are strong results in the case that G is a reflection group and this paper builds on this theory in the direction of subgroups, normal subgroups, quotient groups and extensions. The implications for fundamental cones and order-preserving functions are studied. The main example considered is the hyperoctahedral group, which, acting on a vector in ℝn, permutes and changes the signs of components. Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads