Random reals and Lipschitz continuity

Lewis-Pye, Andrew; and Barmpalias, George (2006) Random reals and Lipschitz continuity Mathematical Structures in Computer Science, 16 (5). pp. 737-749. ISSN 0960-1295
Copy

Lipschitz continuity is used as a tool for analysing the relationship between incomputability and randomness. We present a simpler proof of one of the major results in this area – the theorem of Yu and Ding, which states that there exists no cl-complete c.e. real – and go on to consider the global theory. The existential theory of the cl degrees is decidable, but this does not follow immediately by the standard proof for classical structures, such as the Turing degrees, since the cl degrees are a structure without join. We go on to show that strictly below every random cl degree there is another random cl degree. Results regarding the phenomenon of quasi-maximality in the cl degrees are also presented.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads