Optimal sure portfolio plans

Foldes, L. (1990). Optimal sure portfolio plans. (Financial Markets Group Discussion Papers 106). Financial Markets Group, The London School of Economics and Political Science.
Copy

This paper is a sequel to [2], where a model of optimal accumulation of capital and portfolio choice over an infinite horizon in continuous time was considered in which the vector process representing returns to investment is a general semimartingale with independent increments and the welfare functional has the discounted constant relative risk aversion (CRRA) form. A problem of optimal choice of a sure (i.e. non-random) portfolio plan can be defined in such a way that solutions of this problem correspond to the distant future is sufficiently discounted. This has been proved in [2], land is in part proved again here by different methods. Using the canonical representation of a PII-semimartingale, a formula of Lévy-Khinchin type is derived for the Bilateral Laplace Transform of the compound interest process generated by a sure portfolio plan. With its aid, the existence of an optimal sure portfolio plan is proved under suitable conditions, and various causes of non-existence are identified. Programming conditions characterising an optimal sure portfolio plan are also obtained.

picture_as_pdf

subject
Published Version

Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export