The fractional chromatic number of triangle-free subcubic graphs
Ferguson, D. G., Kaiser, T. & Král’, D.
(2014).
The fractional chromatic number of triangle-free subcubic graphs.
European Journal of Combinatorics,
35, 184-220.
https://doi.org/10.1016/j.ejc.2013.06.006
Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14 / 5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32 / 11 ≈ 2.909.
| Item Type | Article |
|---|---|
| Copyright holders | © 2013 Elsevier B.V. |
| Departments | LSE > Academic Departments > Mathematics |
| DOI | 10.1016/j.ejc.2013.06.006 |
| Date Deposited | 16 Jul 2013 |
| URI | https://researchonline.lse.ac.uk/id/eprint/51104 |
Explore Further
- https://www.scopus.com/pages/publications/84882689526 (Scopus publication)
- http://www.journals.elsevier.com/european-journal-... (Official URL)