Estimating derivatives in nonseparable models with limited dependent variables

Altonji, J. G., Ichimura, H. & Otsu, T.ORCID logo (2012). Estimating derivatives in nonseparable models with limited dependent variables. Econometrica, 80(4), 1701-1719. https://doi.org/10.3982/ECTA8004
Copy

We present a simple way to estimate the effects of changes in a vector of observable variables X on a limited dependent variable Y when Y is a general nonseparable function of X and unobservables, and X is independent of the unobservables. We treat models in which Y is censored from above, below, or both. The basic idea is to first estimate the derivative of the conditional mean of Y given X at x with respect to x on the uncensored sample without correcting for the effect of x on the censored population. We then correct the derivative for the effects of the selection bias. We discuss nonparametric and semiparametric estimators for the derivative. We also discuss the cases of discrete regressors and of endogenous regressors in both cross section and panel data contexts.

Full text not available from this repository.

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export