Intuitionistic logic and elementary rules

Humberstone, Lloyd; and Makinson, David (2012) Intuitionistic logic and elementary rules Mind, 120 (480). pp. 1035-1051. ISSN 0026-4423
Copy

The interplay of introduction and elimination rules for propositional connectives is often seen as suggesting a distinguished role for intuitionistic logic. We prove three formal results concerning intuitionistic propositional logic that bear on that perspective, and discuss their significance. First, for a range of connectives including both negation and the falsum, there are no classically or intuitionistically correct introduction rules. Second, irrespective of the choice of negation or the falsum as a primitive connective, classical and intuitionistic consequence satisfy exactly the same structural, introduction, and elimination (briefly, elementary) rules. Third, for falsum as primitive only, intuitionistic consequence is the least consequence relation that satisfies all classically correct elementary rules.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads