Intuitionistic logic and elementary rules

Humberstone, L. & Makinson, D. (2012). Intuitionistic logic and elementary rules. Mind, 120(480), 1035-1051. https://doi.org/10.1093/mind/fzr076
Copy

The interplay of introduction and elimination rules for propositional connectives is often seen as suggesting a distinguished role for intuitionistic logic. We prove three formal results concerning intuitionistic propositional logic that bear on that perspective, and discuss their significance. First, for a range of connectives including both negation and the falsum, there are no classically or intuitionistically correct introduction rules. Second, irrespective of the choice of negation or the falsum as a primitive connective, classical and intuitionistic consequence satisfy exactly the same structural, introduction, and elimination (briefly, elementary) rules. Third, for falsum as primitive only, intuitionistic consequence is the least consequence relation that satisfies all classically correct elementary rules.

picture_as_pdf

subject
Accepted Version

Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export