Instrumental variables estimation of stationary and nonstationary cointegrating regressions

Robinson, Peter M.; and Gerolimetto, M. (2006) Instrumental variables estimation of stationary and nonstationary cointegrating regressions [Working paper]
Copy

Instrumental variables estimation is classically employed to avoid simultaneous equations bias in a stable environment. Here we use it to improve upon ordinary least squares estimation of cointegrating regressions between nonstationary and/or long memory stationary variables where the integration orders of regressor and disturbance sum to less than 1, as happens always for stationary regressors, and sometimes for mean-reverting nonstationary ones. Unlike in the classical situation, instruments can be correlated with disturbances and/or uncorrelated with regressors. The approach can also be used in traditional non-fractional cointegrating relations. Various choices of instrument are proposed. Finite sample performance is examined.


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads