Inference about realized volatility using infill subsampling

Kalnina, I. & Linton, O. (2007). Inference about realized volatility using infill subsampling. Suntory and Toyota International Centres for Economics and Related Disciplines.
Copy

We investigate the use of subsampling for conducting inference about the quadratic variation of a discretely observed diffusion process under an infill asymptotic scheme. We show that the usual subsampling method of Politis and Romano (1994) is inconsistent when applied to our inference question. Recently, a type of subsampling has been used to do an additive bias correction to obtain a consistent estimator of the quadratic variation of a diffusion process subject to measurement error, Zhang, Mykland, and Ait- Sahalia (2005). This subsampling scheme is also inconsistent when applied to the inference question above. This is due to a high correlation between estimators on different subsamples. We discuss an alternative approach that does not have this correlation problem; however, it has a vanishing bias only under smoothness assumptions on the volatility path. Finally, we propose a subsampling scheme that delivers consistent inference without any smoothness assumptions on the volatility path. This is a general method and can be potentially applied to conduct inference for quadratic variation in the presence of jumps and/or microstructure noise by subsampling appropriate consistent estimators.

picture_as_pdf


Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export