A search game model of the scatter hoarder's problem

Alpern, S., Fokkink, R., Lidbetter, T. & Clayton, N. S. (2012). A search game model of the scatter hoarder's problem. Journal of the Royal Society Interface, 9(70), 869-879. https://doi.org/10.1098/rsif.2011.0581
Copy

Scatter hoarders are animals (e.g. squirrels) who cache food (nuts) over a number of sites for later collection. A certain minimum amount of food must be recovered, possibly after pilfering by another animal, in order to survive the winter. An optimal caching strategy is one that maximizes the survival probability, given worst case behaviour of the pilferer. We modify certain 'accumulation games' studied by Kikuta & Ruckle (2000 J. Optim. Theory Appl.) and Kikuta & Ruckle (2001 Naval Res. Logist.), which modelled the problem of optimal diversification of resources against catastrophic loss, to include the depth atwhich the food is hidden at each caching site. Optimal caching strategies can then be determined as equilibria in a new 'caching game'.We show how the distribution of food over sites and the site-depths of the optimal caching varies with the animal's survival requirements and the amount of pilfering.We showthat in some cases, 'decoy nuts' are required to be placed above other nuts that are buried further down at the same site. Methods from the field of search games are used. Some empirically observed behaviour can be shown to be optimal in our model.

Full text not available from this repository.

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export