On the structure of discounted optimal stopping problems for one-dimensional diffusions

Gapeev, Pavel V.ORCID logo; and Lerche, Hans Rudolf (2011) On the structure of discounted optimal stopping problems for one-dimensional diffusions. Stochastics: an International Journal of Probability and Stochastic Processes, 83 (4-6). pp. 537-554. ISSN 1744-2508
Copy

We connect two approaches for solving discounted optimal stopping problems for one-dimensional time-homogeneous regular diffusion processes on infinite time intervals. The optimal stopping rule is assumed to be the first exit time of the underlying process from a region restricted by two constant boundaries. We provide an explicit decomposition of the reward process into a product of a gain function of the boundaries and a uniformly integrable martingale inside the continuation region. This martingale plays a key role for stating sufficient conditions for the optimality of the first exit time. We also consider several illustrating examples of rational valuation of perpetual American strangle options. © 2011 Copyright Taylor and Francis Group, LLC.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads