Monochromatic cycles in 2-coloured graphs

Benevides, F. S.; Łuczak, T.; Scott, A.; Skokan, JozefORCID logo; and White, M. (2012) Monochromatic cycles in 2-coloured graphs Combinatorics, Probability and Computing, 21 (1-2). pp. 57-87. ISSN 0963-5483
Copy

Li, Nikiforov and Schelp [13] conjectured that any 2-edge coloured graph G with order n and minimum degree δ(G) > 3n/4 contains a monochromatic cycle of length ℓ, for all ℓ ∈ [4, ⌈n/2⌉]. We prove this conjecture for sufficiently large n and also find all 2-edge coloured graphs with δ(G)=3n/4 that do not contain all such cycles. Finally, we show that, for all δ>0 and n>n 0(δ), if G is a 2-edge coloured graph of order n with δ(G) ≥ 3n/4, then one colour class either contains a monochromatic cycle of length at least (2/3+δ/2)n, or contains monochromatic cycles of all lengths ℓ ∈ [3, (2/3-δ)n].


picture_as_pdf
subject
Published Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads