A composite likelihood inference in latent variable models for ordinal longitudinal responses

Vasdekis, Vassilis G. S.; Cagnone, Silvia; and Moustaki, IriniORCID logo (2012) A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika, 77 (3). pp. 425-441. ISSN 0033-3123
Copy

The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads