Gaussian pseudo-maximum likelihood estimation of fractional time series models

Hualde, Javier; and Robinson, Peter (2011) Gaussian pseudo-maximum likelihood estimation of fractional time series models. Annals of Statistics, 39 (6). pp. 3152-3181. ISSN 0090-5364
Copy

We consider the estimation of parametric fractional time series models in which not only is the memory parameter unknown, but one may not know whether it lies in the stationary/invertible region or the nonstationary or noninvertible regions. In these circumstances, a proof of consistency (which is a prerequisite for proving asymptotic normality) can be difficult owing to nonuniform convergence of the objective function over a large admissible parameter space. In particular, this is the case for the conditional sum of squares estimate, which can be expected to be asymptotically efficient under Gaussianity. Without the latter assumption, we establish consistency and asymptotic normality for this estimate in case of a quite general univariate model. For a multivariate model, we establish asymptotic normality of a one-step estimate based on an initial √n-consistent estimate.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads