Cyclic orderings and cyclic arboricity of matroids

van den Heuvel, JanORCID logo; and Thomassé, Stéphane (2012) Cyclic orderings and cyclic arboricity of matroids. Journal of Combinatorial Theory, Series B, 102 (3). pp. 638-646. ISSN 0095-8956
Copy

We prove a general result concerning cyclic orderings of the elements of a matroid. For each matroid M, weight functionω:E(M)→N, and positive integer D, the following are equivalent. (1) For allA⊆E(M), we have∑a∈Aω(a)D⋅r(A). (2) There is a map ϕ that assigns to each element e ofE(M)a setϕ(e)ofω(e)cyclically consecutive elements in the cycle(1,2,…,D)so that each set{e|i∈ϕ(e)}, fori=1,…,D, is independent. As a first corollary we obtain the following. For each matroid M such that|E(M)|andr(M)are coprime, the following are equivalent. (1) For all non-emptyA⊆E(M), we have|A|/r(A)|E(M)|/r(M). (2) There is a cyclic permutation ofE(M)in which all sets ofr(M)cyclically consecutive elements are bases of M. A second corollary is that the circular arboricity of a matroid is equal to its fractional arboricity. These results generalise classical results of Edmonds, Nash-Williams and Tutte on covering and packing matroids by bases and graphs by spanning trees.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads