Topological stable rank of H ∞(Ω) for circular domains Ω

Mortini, Raymond; Rupp, Rudolf; Sasane, AmolORCID logo; and Wick, Brett D. (2010) Topological stable rank of H ∞(Ω) for circular domains Ω Analysis Mathematica, 36 (4). pp. 287-297. ISSN 0133-3852
Copy

Let Ω be a circular domain, that is, an open disk with finitely many closed disjoint disks removed. Denote by H ∞(Ω) the Banach algebra of all bounded holomorphic functions on Ω, with pointwise operations and the supremum norm. We show that the topological stable rank of H ∞(Ω) is equal to 2. The proof is based on Suárez’s theorem that the topological stable rank of H ∞($ \mathbb{D} $D) is equal to 2, where $ \mathbb{D} $D is the unit disk. We also show that for circular domains symmetric to the real axis, the Bass and topological stable ranks of the real-symmetric algebra H ℝ∞ (Ω) are 2.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads