Stable ranks of Banach algebras of operator-valued analytic functions

Sasane, Amol J.ORCID logo (2009) Stable ranks of Banach algebras of operator-valued analytic functions Complex Analysis and Operator Theory, 3 (1). pp. 323-330. ISSN 1661-8254
Copy

Let E be a separable infinite-dimensional Hilbert space, and let H(D; (E)) denote the algebra of all functions f:D (E) that are holomorphic. If is a subalgebra of H(D; (E)) , then using an algebraic result of Corach and Larotonda, we derive that under some conditions, the Bass stable rank of is infinite. In particular, we deduce that the Bass (and hence topological stable ranks) of the Hardy algebra H (D; (E)), the disk algebra A(D; (E)) and the Wiener algebra W+(D; (E)) are all infinite.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads