On the triangle removal lemma for subgraphs of sparse pseudorandom graphs
Kohayakawa, Y., Rödl, V., Schacht, M. & Skokan, J.
(2010).
On the triangle removal lemma for subgraphs of sparse pseudorandom graphs.
In
Barany, I., Solymosi, J. & Sagi, G.
(Eds.),
An Irregular Mind: Szemerédi Is 70
(pp. 359-404).
Springer Berlin / Heidelberg.
We study an extension of the triangle removal lemma of Ruzsa and Szemeredi [Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, North-Holland, Amsterdam, 1978, pp. 939-945], which gave rise to a purely combinatorial proof of the fact that sets of integers of positive upper density contain three-term arithmetic progressions, a result first proved by Roth [On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109].
| Item Type | Chapter |
|---|---|
| Copyright holders | © 2010 Springer Science+Business Media |
| Departments | LSE > Academic Departments > Mathematics |
| Date Deposited | 11 May 2011 |
| URI | https://researchonline.lse.ac.uk/id/eprint/36089 |
Explore Further
- http://www.lse.ac.uk/Mathematics/people/Jozef-Skokan.aspx (Author)
- http://www.springer.com (Official URL)
ORCID: https://orcid.org/0000-0003-3996-7676