Further calculations for the McKean stochastic game for a spectrally negative levy process: from a point to an interval

Baurdoux, Erik J.ORCID logo; and Van Schaik, K. (2011) Further calculations for the McKean stochastic game for a spectrally negative levy process: from a point to an interval Journal of Applied Probability, 48 (1). pp. 200-216. ISSN 0021-9002
Copy

Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game, a game version of the McKean optimal stopping problem (American put), driven by a spectrally negative Levy process. We improve their characterisation of a saddle point for this game when the driving process has a Gaussian component and negative jumps. In particular, we show that the exercise region of the minimiser consists of a singleton when the penalty parameter is larger than some threshold and 'thickens' to a full interval when the penalty parameter drops below this threshold. Expressions in terms of scale functions for the general case and in terms of polynomials for a specific jump diffusion case are provided.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads