A nonparametric test for weak dependence against strong cycles and its bootstrap analogue

Hidalgo, Javier (2007) A nonparametric test for weak dependence against strong cycles and its bootstrap analogue Journal of Time Series Analysis, 28 (3). pp. 307-349. ISSN 0143-9782
Copy

We examine a test for the hypothesis of weak dependence against strong cyclical components. We show that the limiting distribution of the test is a Gumbel distribution, denoted G(·). However, since G(·) may be a poor approximation to the finite sample distribution, being the rate of the convergence logarithmic [see Hall Journal of Applied Probability (1979), Vol. 16, pp. 433–439], inferences based on G(·) may not be very reliable for moderate sample sizes. On the other hand, in a related context, Hall [Probability Theory and Related Fields (1991), Vol. 89, pp. 447–455] showed that the level of accuracy of the bootstrap is significantly better. For that reason, we describe an approach to bootstrapping the test based on Efron's [Annals of Statistics (1979), Vol. 7, pp. 1–26] resampling scheme of the data. We show that the bootstrap principle is consistent under very mild regularity conditions.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads