Gadgets, approximation, and linear programming

Trevisan, Luca; Sorkin, Gregory B.ORCID logo; Sudan, Madhu; and Williamson, David P. Gadgets, approximation, and linear programming. SIAM Journal on Computing, 29 (6). pp. 2074-2097. ISSN 0097-5397
Copy

We present a linear programming-based method for finding "gadgets," i.e., combinatorial structures reducing constraints of one optimization problem to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by Bellare, Goldreich, and Sudan [SIAM J. Comput., 27 (1998), pp. 804-915] of how to prove the optimality of gadgets: linear programming duality gives such proofs. The new gadgets, when combined with recent results of Håstad [Proceedings of the 29th ACM Symposium on Theory of Computing, 1997, pp. 1-10], improve the known inapproximability results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 16/17+ ∊ and 12/13+ ∊ , respectively, is NP-hard for every ∊ > 0. Prior to this work, the best-known inapproximability thresholds for both problems were 71/72 (M. Bellare, O. Goldreich, and M. Sudan [SIAM J. Comput., 27 (1998), pp. 804-915]). Without using the gadgets from this paper, the best possible hardness that would follow from Bellare, Goldreich, and Sudan and Håstad is 18/19. We also use the gadgets to obtain an improved approximation algorithm for MAX3 SAT which guarantees an approximation ratio of .801.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads