Disjoint paths in arborescences

Colussi, Livio; Conforti, Michele; and Zambelli, Giacomo (2005) Disjoint paths in arborescences. Discrete Mathematics, 292 (1-3). pp. 187-191. ISSN 0012-365X
Copy

An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at r. A similar theorem of Menger guarantees that λ strongly arc disjoint rv-paths exist for every vertex v, where “strongly” means that no two paths contain a pair of symmetric arcs. We prove that if a directed graph D contains two arc-disjoint spanning arborescences rooted at r, then D contains two such arborences with the property that for every node v the paths from r to v in the two arborences satisfy Menger's theorem.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads