Mixed-integer vertex covers on bipartite graphs

Conforti, Michele; Gerards, Bert; and Zambelli, Giacomo (2007) Mixed-integer vertex covers on bipartite graphs In: Integer Programming and Combinatorial Optimization. Lecture notes in computer science (4513). Springer Berlin / Heidelberg, Berlin, Germany, pp. 324-336. ISBN 9783540727927
Copy

Let A be the edge-node incidence matrix of a bipartite graph G = (U,V;E), I be a subset of the nodes of G, and b be a vector such that 2b is integral. We consider the following mixed-integer set: We characterize conv(X(G,b,I)) in its original space. That is, we describe a matrix (C,d) such that conv(X(G,b,I)) = {x : Cx ≥ d}. This is accomplished by computing the projection onto the space of the x-variables of an extended formulation, given in [1], for conv(X(G,b,I)). We then give a polynomial-time algorithm for the separation problem for conv(X(G,b,I)), thus showing that the problem of optimizing a linear function over the set X(G,b,I) is solvable in polynomial time.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads